

Braking unit instructions

Brake unit model description

brake unit model summary

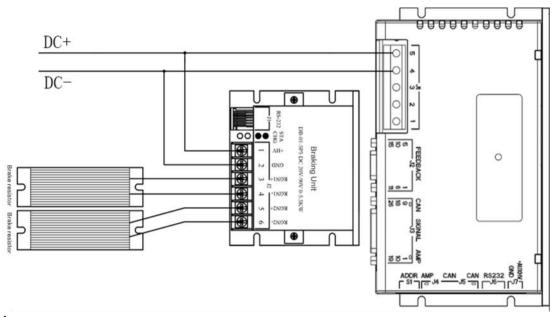
model	voltage	Power		
DB-01-5P5	18~90VDC	0~5.5KW		
DB-02-5P5	18~180VDC	0~5.5KW		

1. Principle of brake unit:

The braking unit is composed of high power transistor MOS and its driving circuit. Its function is to discharge the current link capacitor in the specified voltage range can not be stored or the internal brake resistance is too late to consume and make the DC part "overvoltage", need to add external brake components to speed up the consumption of regenerative energy.

2 Brake unit + resistor:

The braking unit is composed of high power transistor MOS and its driving circuit. Its function is to provide a path for the discharge current IB to flow through the brake resistor.


The action process of the braking unit:

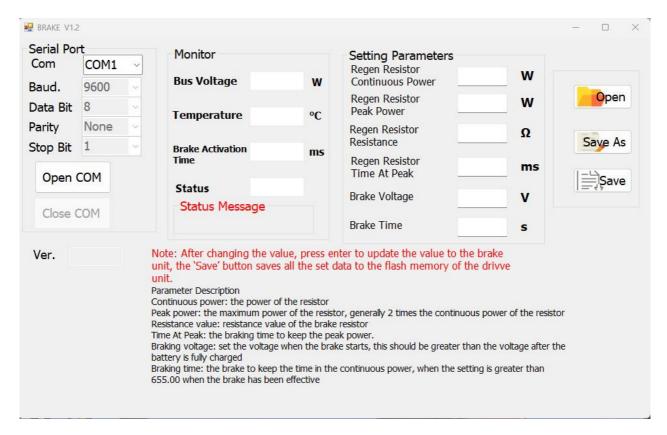
- a、 when the motor decelerates under the action of an external force, the motor runs in a power generation state to generate renewable energy. The resulting three-phase AC EMF is rectified by a three-phase fully controlled bridge composed of six free-flowing diodes in the inverter part of the inverter, so that the dc-bus voltage in the inverter is continuously increased.
- b. When the DC voltage reaches a certain voltage (the opening voltage of the brake unit), the power switch tube of the brake unit is opened and the current flows through the brake resistance.
- c. The brake resistor releases heat and absorbs regenerative energy, the motor speed decreases, and the DC bus voltage of the inverter decreases.
- d. When the DC bus voltage drops to a certain voltage (brake unit stop voltage), the power tube of the brake unit is turned off. At this time, there is no braking current flowing through the resistance, and the brake resistance is naturally radiating heat to reduce its own temperature.
- e. When the voltage of the DC bus rises again to make the braking unit act, the braking unit will repeat the above process to balance the bus voltage and make the system operate normally.

Because the working condition of the brake unit belongs to short-time work, that is, the power on time is very short, in the power on time, the temperature rise is far from stable temperature rise; The intermittent time after each power is longer, in the intermittent time, its temperature is enough to drop to the same as the ambient temperature, so the rated power of the brake resistor will be greatly reduced, the price will also fall; In addition, because there is only one IGBT and the braking time is ms level, the requirements for the transient performance index of the power tube opening and turning off are low, and even the turn-off time is required to be as short as possible to reduce the turn-off pulse voltage and protect the power tube. The control mechanism is also relatively simple and easy to implement. Because of the above advantages, it is widely used in crane and other potential energy load and need fast braking but short working system occasions.

3. Brake unit wiring & module wiring diagram

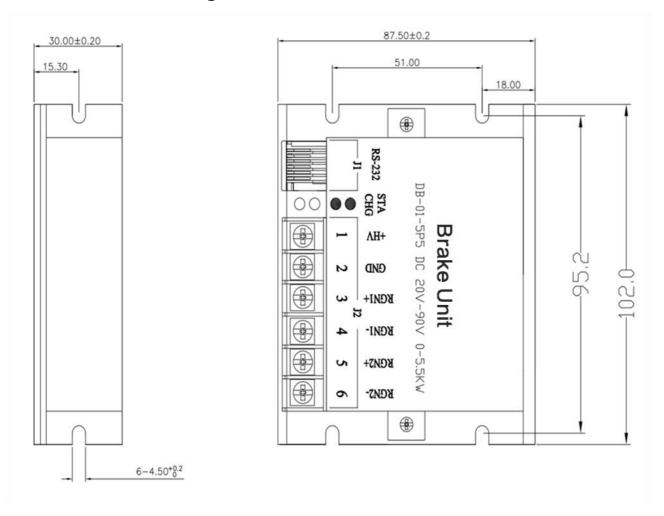
- 1 J1 The RS232 connection line and the host computer are connected to adjust the data of the braking unit
- 2 STA CHG status light
- 3 J2
 - a. +HV Connect the positive end of the bus
 - b. GND Connect the negative end of the bus
 - c. RGN1+/RGN1- junction resistor. RGN2+/RGN2 can be connected when multiple resistors are needed

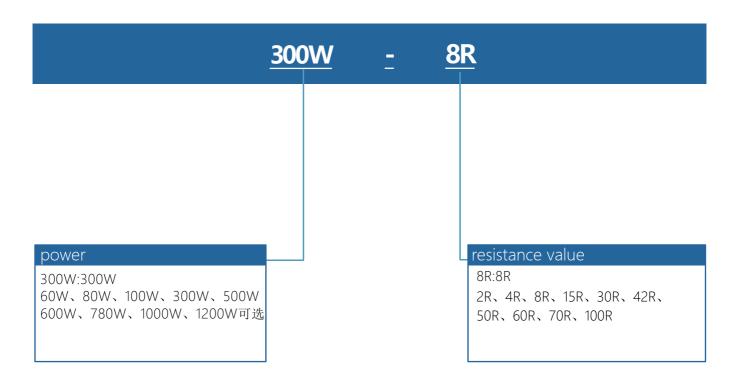
Cautions:


- 1) The brake unit and the servo driver can share the RS23 debugging cable.
- 2) Please select the specification of the brake resistor according to the motor power.
- 3) When a power supply supplies multiple motors, only one brake unit needs to be connected at the power supply end.

Indicator status

Green flicker	normal	
Red Always On	Under braking	
Red flash 1 time	Overheating	Brake temperature is too high due to prolonged braking. Heat dissipation from the unit should be increased
Red flash 2 time	Overvoltage	Inability to effectively drain the voltage. Appropriate resistor selection or brake unit hardware problem
Red flash 3 time	Undervoltage	The voltage is too low. Check supply voltage
Red flash 4 time	Short-circuit	Excessive current. Appropriate resistor selection or brake unit hardware problem
Red flash 5 time	Overloaded	The braking time enters beyond the setting time of I2T. Increase the time of I2T appropriately
Red flash 6 time	Data error	Setting parameter error


4. parameter testing



- (1) OpenCOM open serial port (9600,8,n,1)
- (2) CloseCOM closes the serial port
- (3) Monitor the parameters. Here it is possible to monitor the actual voltage, the temperature of the braking module, the braking time and other information.
 - (4) setup parameter
 - 1) Sustained power. Input the rated power of the brake resistor
 - 2) Peak power. Peak power of the input brake resistor
 - 3) I2T. Set the time to brake
 - 4) Brake voltage. Set the voltage at the start of braking.
 - 5) Open it. Open the saved data
- 6) Write. When the data is modified or opened, press "Write data" to write the parameters to flash.
 - 7) Save as. Save the set data to your computer.

5. Brake unit size diagram

Brake resistor model description

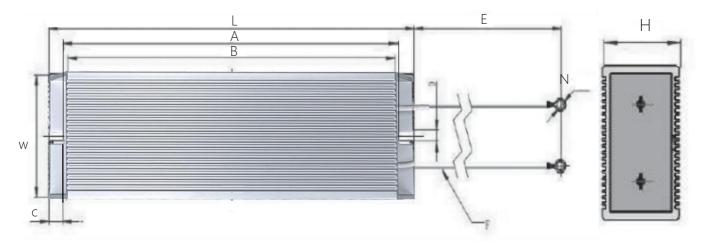
Brake resistance model summary

model	power	resistance value		
60W 100R	60W	100R		
80W 60R	80W	60R		
100W 8R	100W	8R		
300W 2R	300W	2R		
300W 4R	300W	4R		
300W 8R	300W	8R		
300W 50R	300W	50R		
300W 150R	300W	150R		
500W 30R	500W	30R		
600W2R	600W	2R		
600W4R	600W	4R		
780W70R	780W	70R		
1000W 4R	1000W	4R		
1200W 42R	1200W	42R		
1500W 2R	1500W	2R		
1500W 25R	1500W	25R		

1. Introduction to brake resistance

Brake resistance is a kind of aluminum shell resistance. It is mainly used in the mechanical system of the servo driver to control the motor to stop quickly. It helps the motor to convert the regenerative electric energy generated by the fast stop to heat energy.

2. Principle of brake resistance:


When the working frequency of the motor decreases, it will be in the state of regenerative braking. The kinetic energy of the driving system will be fed back to the DC circuit, so that the DC voltage UD keeps rising, and may even reach a dangerous point. Therefore, the energy regenerated into the DC circuit must be consumed to keep the UD within the allowable range. The brake resistance is used to consume this energy.

3 Brake unit + resistor:

The brake unit consists of high power transistor MOS and its driving circuit. Its function is to discharge current IB through the brake resistance supply path.

4. Resistance selection and size

Power(W)	Resistance value (Ω)	Bottom length (L)	Breadth(W)	altitude(H)	Length of front(B)	pitch row(A)	groove width(D)	Length of cable (E)
300	2	215	60	30	175	195	5. 5	300
300	4	215	60	30	175	195	5. 5	300
300	8	215	60	30	175	195	5. 5	300
600	4	300	60	30	260	280	5. 5	300
600	8	300	60	30	260	280	5. 5	300
1000	4	330	60	30	290	310	5. 5	300

